A Fuzzy Logic Control System for Quadcopter by Human Voluntary-Physical Movements

Document Type: Original Research (Full Papers)


Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran


In recent years, many scientists in universities and research centers focused on quadcopters. One of the problems with quadcopters is the complexity of its manual control system. In a typical system, the user is the observer of robot in addition to controlling the radio controller. In this paper, using a fuzzy logic algorithm, a robot control system for main and subsidiary movements by human head or wrist voluntary-physical movements is considered. In this case, without looking at control board the user can control the robot only with changing the head control voluntary or physical movements. Simulation results show that using fuzzy algorithm for determining the bending scale in different angles can decrease the human errors and processor computations. Also using fuzzy logic algorithm in the designed system the robot can track the user voluntary-physical movements optimally. In addition, the system output noises adjust due to involuntary user movements.