A Sliding Mode Controler of Hips Actuated for Passive Walking Robots

Document Type : Original Research (Full Papers)


1 Mechanical Engineering Department, Islamic Azad University Tehran North Branch, Tehran, Iran

2 Management Engineering Department, Azad University Science and Research Branch, Tehran, Iran

3 Mechanical Engineering Department, Azad University Science and Research Branch, Tehran, Iran


This paper addresses the application of using pneumatic force actuators at the hips of a five-link robotic system to provide a controllable input torque. The goal of this research is to provide a base to build upon to eventually produce an ” active” biped walking robot that utilizes the benefits of the passive walking cycle. A reduced-order mathematical model of the system consisting of the pneumatic proportional valve and actuators is utilized in designing the force controller. The model takes into account tube links, valve friction, piston friction, and valve mechanics. The five-link robot is also modeled, including moments of inertia, masses, and centers of mass to design the trajectory controller. The mathematical models provide the equations necessary to develop the nonlinear control laws based on Sliding Mode Control Theory for both the force and trajectory controller. The controllers receive input signals from both pressure and position sensors located at the hips and position sensors at the knees. These signals are then converted into digital signals and processed by the computer using numerical analysis to obtain ethical values. Once the signals are input into the controllers, the experimental results of the actual system track the desired force and position trajectories defined for each controller within desired limits.